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The two-body additive approximation on the time-dependent Liouville 
distribution, first introduced in part I of this series, is put into the conven- 
tional form of a self-contained kinetic equation for the doublet distribution. 
From this point of view the approximation consists in truncating the 
BBGKY chain by expressing the triplet distribution as a functional of 
lower distributions at the same value of the time variable. To accomplish 
this, it is necessary to study two associated purely spatial integral equations. 
The doublet kinetic equation can then be written in terms of solutions of 
these integral equations and comparison with conventional methods of trun- 
cating the BBGKY chain can then be made. For the purpose of comparison a 
method of truncating the chain based on the Kirkwood superposition approx- 
imation is introduced and discussed briefly. The momentum structure of the 
resulting doublet kinetic equation is similar, but the nonlocality in space of 
our truncation introduces distinct differences in the spatial structure. The in- 
consistency between conventional truncations and the exact initial conditions 
used for the calculation of time-dependent correlation functions is pointed out. 
This inconsistency is not shared by the two-body additive approximation. 
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1. I N T R O D U C T I O N  

In a previous article, (1~ which we refer to as I, one of us presented an approach 
to the solution of the classical Liouville equation in the linear response 
domain. The approach was based on assuming an explicit functional form 
for the N-particle Liouville distribution. Here the notation was 

fN = ~(1 + FN), f F~a)d r  = 0 

where qb is the equilibrium distribution. 
The one-body approximation consisted in putting 

N 

~'~ = ~ r q~, t) - <~> = { g ( i )  - <N(i)>}r  

where the function r q, t) is determined by the theory. Such a restriction 
of the functional form of F~ is equivalent to a truncation of the hierarchy of 
reduced distribution functions. In the one-body additive case r determines 
the time-dependent singlet distribution for the same time. However, the 
approximate doublet distribution and higher-order distributions depend only 
on ~(1). Hence the doublet distribution is a linear functional of the singlet, 
i.e., we have a truncation. One can then use the first equation of the time- 
dependent BBGKY hierarchy to obtain a self-contained kinetic equation 
for the singlet distribution N(1). This procedure is very simple, but there is 
one remaining subtle point. The resulting kinetic equation contains both 
the bare interparticle potential and the equilibrium position correlation 
functions. However, the theory is of a type that assumes the exact static 
correlation functions to be known, and is concerned with computing time- 
dependent correlations based on that knowledge. Therefore one can utilize 
the exact equilibrium hierarchy to transform the kinetic equations to a form 
in which the potential does not appear. The result is a simple, well-known 
generalization of the Vlasov equations. (2-5~ It retains meaning even for strong 
short-range forces since the bare interparticle potential has been replaced by 
the Ornstein-Zernike direct correlation function. 

The main new result of our previous work was to show that this method 
of attack can be generalized and leads at the next level of approximation to a 
self-contained doublet kinetic equation. Again, the bare potential is completely 
eliminated so that the equation retains meaning in the two extremes of 
strong short-range forces and long-range Coulomb forces. The differences 
between the two types of system are reflected in the properties of the static 
position correlation functions. 

The purpose of this paper is to put the equations of the two-body 
additive approximation into a conventional form of a self-contained equation 
for the time-dependent doublet distribution function. We will furthermore 
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exhibit the relation of this unified theory to other equations, i.e., the Boltz- 
mann-Enskog equation (6~ for strong short-range forces and the Lenard-  
Balescu-Guernsey (7~ equation for long-range Coulomb forces. 

The two-body additive approximation works with a function 
~F(Pl, P2, ql, q2, t). The Liouville distribution is taken to be of the form 2 

FN = �89 - (N(i2)))~F(i2) (1) 

In this paper we simplify the presentation by not splitting off one-body 
additive parts explicitly. The generality of  the theory is not affected, because 
the class of one-body additive functions is contained in the class of two-body 
additive functions. (For a further elaboration of this point see Appendix A.) 
The theory determines the form of ~F(12, t) by the observation that the 
function ~(12) is directlyconnected to the time-dependent doublet distribution 
by the definition of the doublet: 

37(12) -= (29(12)Fu) = �89 - (N(12))(N(~2~))}W(~7~) (2) 

We can consider this as an integral equation for ~(12), with 37(12) as an 
inhomogeneous term. If  we can solve the integral equation, we express ~F(12) 
as a linear functional of 37(12). This is referred to as the inversion problem. 
In the case of the one-body additive approximation the corresponding integral 
equation can be solved exactly by making a Fourier transformation in the 
spatial variables and obtaining a degenerate integral equation in the momen- 
tum variables. In the two-body additive approximation, however, one must 
introduce resolvent kernels for two associated spatial integral equations. 
If this is done, the momentum dependence can be handled exactly. The 
inversion problem is treated in Sections 2 and 3 of  this paper. The analysis is 
somewhat tedious but must be done with care to handle the thermodynamic 
limit properly. 

Once the inversion problem has been put into a convenient form one 
can immediately find the triplet distribution expressed as a functional of  the 
lower-order distributions, by substituting in the definition 

37(123) -= {(N(lZ3)2f'05)) - (3)(123))(N(43))}~F(7~3)/2 (3) 

The triplet distribution can then be written as a linear, spatially nonlocal 
functional of lower-order distributions at the same value of the time variable. 
This is exhibited explicitly in Appendix B. 

Actually, as shown in I, the theory does not require an explicit knowledge 
of the form of  A7(123). Thus we found the doublet equation 

[e37(12)/~3t] + {L(12) + L(21)}(~(12))'-F(12) 

+ (N(lZ3))M(1213){W(13) + W(23)} = 0 (4) 

z We use the notation of I. In particular, F(12) = S dx2 dp2 F(plp2xlxz). 
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where 

p~ 8 l~log(_~(12)) O 
L(12) = m'~-~x~ + 0 exl ~Pl 

M(1213) P~ ~ P2 0 181og~N(123)) 8 
= + m'ax--  + o apl 

+ 0 Ox2 ap2 (5) 

and 0 = 1/KBT. With the formal solution of the inversion problem in terms 
of spatial resolvent kernels one can eliminate ~(12) and obtain a self- 
contained doublet kinetic equation. This is Eq. (88) of Section 4. 

Section 5 is devoted to a discussion of some of the more conventional 
methods of truncating the hierarchy and a comparison with the present 
truncation. 

In summary, in this paper the equations of the second approximation 
are put in the conventional form of a self-contained equation for the time- 
dependent doublet distribution function. In the streaming part of the equa- 
tion the bare two-body potential is replaced by - 0  -1 log[p2(xlx2)], where 
p2 is the equilibrium pair distribution. The integral terms of the equation 
represent additional effects of the medium. In the simplest conventional 
approximation (neglect of the third-order cumulant) the integral terms have 
a convolution character, i.e., the kernels depend on the difference of spatial 
arguments. In previous work this fact has made possible a solution of the 
doublet equation using the theory of singular integral equations, provided 
the two-body potential in the streaming term is neglected (Lenard, Balescu, 
Guernsey). ~7~ The Boltzmann-Enskog approximation, on the other hand, 
handles the doublet equation by treating the direct two-body interaction 
term exactly, but entirely neglects the integral terms. 

We show, using a conventional approach based on the superposition 
approximation, that in any minimally adequate unified theory of fluids the 
integral terms do not have a purely convolution character. (Actually, we are 
able to find the convolution part of the integral terms exactly for our theory.) 
In addition, the bare two-body interaction is modified by medium effects. 
Our equations exhibit precisely these features, with the fortunate circumstance 
that the momentum variable structure of the integral terms is tractable. The 
present theory has the advantage of satisfying exact requirements such as 
normalization conditions on the distribution functions, correct short-time 
behavior, etc. 

It should be stressed that the natural procedure in our approach is to 
work directly with approximations to the Liouville distribution. The goal of 
the theory is the calculation of time-dependent correlation functions in terms 
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of equilibrium correlation functions. From this point of view the route through 
kinetic equations is not the most direct. Nevertheless, there is value in finding 
the explicit doublet kinetic equation implied by the two-body additive 
approximation. It is the clearest way to exhibit the relationship among 
various quantities of direct physical interest. For example, the hydrodynamic 
limit is most easily studied in the kinetic equation approach. The truncation 
of the triplet distribution in terms of lower-order distributions has a spatially 
nonlocal character that is unnatural from the point of view of conventional 
truncations. Yet this nonlocal character is needed to remedy deficiencies of 
standard truncation such as errors at t = 0 and for short time. To a certain 
extent this was already apparent in the one-body additive approximation of 
Zwanzig. Conventional theories fail to obtain the simple result that the Vlasov 
equation should be replaced by an equation involving the Ornstein-Zernike 
direct correlation. Our theory is not unique in this respect. For example, the 
theory of Lebowitz et  al. (5~ pays careful attention to the short-time behavior 
and is an improvement over conventional theories. 

In other papers in this series we develop the analytical tools such as varia- 
tional methods and projection operator techniques required to find reliable 
results for time-dependent correlation functions) 2,a) These methods are needed 
irrespective of whether one works directly with the two-body additive function 
or with a doublet kinetic equation. 

2. STRUCTURE OF THE INVERSION PROBLEM 

We start by defining 

X(12) = �89 + W(21)] (6) 

and writing the time-dependent doublet distribution in the form 

- X(13) X(23) 't 
57(12) = X(12) + (N(123))((N---(~) + (N(23)5] 

+ -}(N,R(1237~)} X(34) 
(N(33,)5 (7) 

Here 

(N(12)5 = r162 r ~ 4(Pl) 

(N(123)5 = r162162 

(N4R(1234)) = r162162162 - p2(xlx2)p2(x3x,)} 

The p's are equilibrium position correlation functions. 

(8) 
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We now introduce, using a one-dimensional notation 

f alp1 dp2 x(plp2]x~x=) Xc(XlX2) 

XRB(plIxlx2) = f dp2 x(p~P2lX~X2) - xC(x~x2)6x 
l 

.I dp~ X(pxp2lx~x2) - xLB(p2[x1x2) Xc(XzX2)~2 

XA(plp2 [xlx2) = X(PlP2IXlX2) - r [xlx2) 
- X L ~ ( p 2 [ x l x 2 ) 6 I  - -  ~bl~b2Xc(XlX2) (9) 

We then have 

X(plp21xlx2) = xA(plp2Ixlx2) + r 
+ 61xL~(p=lxlx~) + 6162x~ (10) 

We can define 57 A, A7 B, and ATe in a similar manner such that 

37(Plp2[x~x2) = bTA(p~p2[x~x2) + ~52NRB(p~ [X~X2) 
+ ~TLB(p21xlx2) + ff~bz37e(x~x2) (11) 

The reason we have decomposed our distribution in this manner is 
that these four types of functions define four invariant subspaces of the 
linear operator relating N to X. The structure of the operator within each 
subspace is different for different subspaces, but it involves only spatial 
variables. 

We note the following normalization properties (which apply to both 
q,'(12) and A7(12)): 

f xA(plp2]xlx2)dpl = y XA(plp2]xlx2)dp2 = 0 

f XRB(pl]xlx2)dpl = f XLB(p2[xlx2)dp2 ~ 0 (12) 

f X(plp21xlx2) = X~"(pllx~x2) + ~b~XC(x~xz) dp~ 

And we observe that a commonly encountered quantity, involving functions 
from two of the subspaces, is 

f bT(p~p21x~x2) dp2 = NR~(p~lx~x2) + 5b~TC(xlx2) (13) PR(PllXlX2) 

There are also symmetry properties that follow from the general symmetry 
of both X and 37: 

X(P~P2[X~X2) = X(P~P~lXzX~), XC(x~x2) = Xc(X~X~) 
(14) 

xP(p~lx~x2) = xP(p~lx~x,), xA@~p~Ix~x~) = xA~2p~[x2x~) 
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The inversion problem can now be put in the form 

~7~(plp~[x~x~) = xA(o10~[XlX~) 

~"(pl  I xlx~) dx3 

~L"(p~lxlx~) b~(xlx2x3)/ o~(x~x~) lxP(p~[x~x~) dxa 
(15) [ x~('~x~) x~ d,,3 ~7~(xlx~) = x~(x~x~) + ) 0 ~ ( x l x ~ x ~ ) \ ~  + 

p2(x2x3)] 

1 p~(x~x~)p~(x~x~)} ~ dx~ dx~ + ~ {p~(x~x~x~x~) - f,~ 3x~) 

The inversion problem thus amounts to finding the spatial resotvent 
kernels defined by 

d 
(16) 

XC(xlx2) = (K4(xlxzxax4)~TC(xax4) dxa dx4 
d 

The momentum variable p~ enters only as a parameter in the first expression. 
The solution for XLB(p21xlx2) follows from the one for XR B by the symmetry 
relation. 

The complete formal solution to the inversion problem can be written as 

X(12) = ~7A(12) + +~f K3(xlx2x3)~TP(xlx3lel)dxa 
+ ~1 f K3(x2xlx~)?Tp(x2x~ IP~) dx~ 

+ +l~ f f K(x~x2xax,)~C(xax,) dxa dx, (17) 

It has the property 

f •(13) dpa = f K3(xlx3x4)PT~(xlx~lpi) dx4 

+ q~l f K4(xlxsx4xs)A7C(x~xs) dx4 dx5 (1 8) 

It is worthwhile making the connection between the present formulation 
of the two-body additive approximation and the one-body approximation. 
This is most easily done in the language of "gauge transformations," dis- 
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cussed in Appendix A. There it is shown that we can break up any ~F(12) 
into two pieces: 

~F(12) = ~F'(12) + {[r + r  1)} (19) 

in such a way that tF'(12) has the property 

-1z((N(1)N(23)) - (N(1))(N(2]))}tF'(7.3) = 0 (20) 

Equation (2) then becomes 

57(12)/(N - 1) = f(1)  = {(N(1)N(2)) - (N(1))(N(2)))r (21) 

~ ( 1 2 ) -  N(12) - 370(12) 

= �89 - (N(12))(N(37~))}W'(37~) (22) 
where 

57o(12 ) = ((N(12)N(3)) - (N(1))(N(23)))r (23) 

We first note that (21) is the definition for the r which appears in the 
one-body theory. By Fourier transforming it is easy to invert this exactly, ob- 
taining r as a functional o f f ( l ) .  In (22), therefore, 570(12) is also a known 
functional of the singlet; it is the value of 57(12) predicted by the one-body 
theory. Hence ~r(12) and W'(12) represent deviations of FN from one-body 
additivity. Furthermore, the kernel of the integral equation (22) is the same 
as that of (6), so the same solving kernels/s and/ (4  can be used to obtain 
the full two-body additive theory. On the other hand, this separation, along 
with the formulation in terms of sectors of the momentum variable, is useful 
if one seeks theories intermediate between the one-body and two-body additive 
theories. 

3. S O L U T I O N  OF I N V E R S I O N  P R O B L E M  

3.1. Inversion Problem for  B Sector  

We write 

N~B(plIx~x2) -- N~(pllxllxl + x), x = x2 - xl (24) 

and we make use of the translational invariance of the equilibrium system to 
introduce the notation 

R2(x2 - xl) = p2(x2xl), Ra(x2 - xllxa - xl) = p3(xlx2x3) (25) 
R~(x~ - x~Ix3 - x~lx~ - x~) = p~(x~x2x3x~) 

Then the integral equation for x~ B is 

(R3(x[y) XRB(pl[Xz[Xl + y) dy m~@x[x~[x~  + x) = X ~ l l x ~ l x ~  + x)  + ) R2(y) 

(26) 
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In this case we can check that the solution may be written as 

x~B(pllxllxl + x) = f K3(xly)N~B@IIXlIX~ + y)dy (27) 

This involves a single kernel K~(x]y) obeying 

8(x - z) = Ka(xlz) + f [R3(xly)/R2(y)]g3(y[z) dy (28) 

We have a simple equation for the quantity 

A3(x) -~ f K3(x[z) dz (29) 

It is 

= A3(x) + j [R3(x]y)/R2(y)]Aa(y) dy (30) 1 

In addition, the normalization condition on Ra(x[y) yields 

= ( N -  1) /K3(xlz ) dx (31) 1 

To analyze the spatial structure of the kernel Ka(x[y), we introduce 
Fourier transforms by 

(klKa]l) - (1/~) f (exp ik.x)Ka(x[y)(exp - i l . y )  dy dx 

K3(xly) = (l/f~) ~ ~ (exp - ik .x ) (exp  il.y)(klK3[l) (32) 

A(k[l) = (1/f~) f (exp ik.x)[R3(xly)/R2(y)](exp - il.y) dy dx 

We then obtain 

(0[Kall)--  [ I / ( N -  1)131, o (33) 

For k v a 0 we have the equations 

~qSk,, = (k lKal l )  + ~ / " (k lk ' ) (k ' lKa l l )  (34) 
k '  

In analyzing these equations, it is important to note some general 
properties of the matrix elements A(kll ). We have A(0[0) = N - 2, A(0[I) = 0. 
The elements A(k[k) and A(k]0) are of order unity, while all the other A(ktl ) 
are of order ~ -  ~. It is then convenient to distinguish three sectors. 

Sector 1 

(klK3]0>{1 + A(klk)} = --[A(kI0)/(N -- 1)] -- ~ /',(klk')<k'[K310) (35) 
k '  C k  
k ' r  

This shows that (k[K310) is of order 1/(N - 1). 
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Sector 2 

<k]K3lk) = 

Sector 3 

1 1 
1 + A(k[k) 1 + A(klk) ~ A(klk')(k'lK3lk) 

k ' ~ k  

(36) 

A(kll) ~ k  A(klk') 
(klK311) = [1 + A(klk)][1 + A(I]I)] - k" 1 + A(klk ) (k'fK3ll) (37) 

k ' - ~ l  

It follows that (k[Ka]l) are of order f~-l. From Eq. (2) we see that in the 
infinite-volume limit 

(k]K~lk) --> {1 + A(klk)) -1 (38) 

which is of order unity. We thus have the spatial structure of K3(x]y) 

K3(xly) = [ 1 / ( N -  1)f2] + (l/f2) ~ (klK3[0)(ex p - i k . x )  
k ~ 0  

+ (1/f~) ~ (klg3[k)[exp ik .(y - x) 
k : ~ 0  

+ (l/D) ~ ~ (k[K3[l) exp i(l.y - k .x)  (39) 
k r  

As(x) = ~K3(x]y)dy = [ 1 / ( N -  1)] + ~ (k[K3]0)exp --/key 
d . ~ o  (40) 

To have a feeling for the values of the matrix elements, we note that the 
Kirkwood superposition approximation for the equilibrium distribution 
functions, namely R3(xlz)= po3R2(x)R2(z)R2(x- z), gives, for k ~  0, 
1 ~  0, a n d k r  

A(kl0 ) = A(k[k) = [1 - (1/N)]R2(k)/po 

A(kll) = (I/~po3)R2(l)R2(k - !) 

(41) 

(42) 

3.2. Inversion Problem for  Sector  C 

In this case it is desirable to go to center-of-mass and relative coordinates, 
with (x2 - xO = x and �89 + x2) = xl + �89 

Xc(XlX2) -- ~ Xxc(x)[exp - iX. (xl + �89 
x (43) 

57C(xxx2) = ~ [NxC(x)/~] exp - i Z . ( x l  + �89 
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It suffices to consider each value of X separately. From (15) we have the 
integral equation 

(exp -�89 = {3(x - 2) + Ra(x]~_____~) + (exp - iX.x)  R3(-xlz) 
R2(~) R2(2) 

1 . . . . .  [R~(xlY]~) + ~ I .exp- t^-y)[  ~ R2(x)]} 

x ( x x C ( i ) e x p - ~ i X . @  (44) 

3.2.1. Spatially Homogeneous Case. It is convenient to first analyze the 
spatially homogeneous case, when X = 0. We introduce the matrix element 

Wo(klk' ) = ~ (expik-x)(exp - i k ' . z )  R~(xLYlZ) R2(x) dxdydz (45) 
R~(z) 

When we take the Fourier components, we find for k = 0 that f Not(X) 

dx = 0. In addition, as shown in Appendix A we are free to set f XoC(X) dx = 0. 

Hence we are only concerned with nonzero wave vectors. We write 

NoC(k)/Do(k) = ~oC(k) + ~ <klPolk')~oC(k ') (46) 
k ' r  
k ' r  

where 

Do(k) = 1 + 2A(klk) + 2Wo(klk ) 

(klPol k ')  = [2A(klk') + .~Wo(klk')]/D(k) (47) 

Here we have used the symmetry 20C(k) = ~oC(-k). 
Analysis of the matrix elements Wo(klk') by decomposition into Mayer 

clusters shows that when k' # k the matrix element is of order unity. Other- 
wise it is of order ~2-1. If we now introduce a resolvent kernel 

~oC(k) = ~ <kIK4oll)~Voc(1) (48) 
1 

we find that in the thermodynamic limit the diagonal element ls 

(klK,o[k) -~ Do- ~(k) (49) 

The matrix element (klK~o I - k )  is zero. The other off-diagonal elements 
obey the equation 

k # +l, <klg~o]l) + ~ (k[Poik')(k'[K4ol 1) - 0 (50) 
k" r :t:k 
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To estimate the matrix elements occurring, we make use of the generalized 
superposition principle 

p4(xlx~x3x,) = p;%(x~x~)p2(x~x3)p~(x~x~)p~(x~x3)p~(x~x,)p~(x,x,) (51) 

We find 

with 

Wo(klk') = (po 8/f2) f dx Fk,(x)F_k,(x)R2(x)(exp ik.x) dx (52) 

/ -  

Fk,(x) = J (exp - k ' .  ~)R2(~ + x)R2(~) d~ (53) 

The Fk(x) have the properties 

Fk(x) = F_ g ( -  x) = (exp ik. x)F_ k(x) (54) 

It is easy to verify the assertions concerning the order of magnitude of the 
W0(k[k'). A rigorous demonstration can be made using a cluster development 
of the four-body correlation function. 

3.2.2. Spatially Inhomogeneous Case. The most difficult part of the 
inversion problem is the spatially inhomogeneous case for sector C. We 
have already written Xc(XlX2) in the form of Eq. (44). We will be concerned 
with the Fourier transform 

- f. (exp ik.x)(exp - �89 x)NxC(x) MxC(k) dx 
(55) / ,  

;~xC(k) = J (exp ik. x)(exp - �89 x)xxC(x) dx 

Another useful form is the double Fourier transform representation 

Xc(XlX2) = (1/O 2) ~ ~C(kllk2)exp i(kl-xl + k2.x2) (56) 
k l k 2  

The connection between the two descriptions is given by 

~c(X - klk ) = ~xC(k) (57) 

The singlet contributions to IVC(klk2) come from kl = 0 or k2 = 0. Thus in 
~fxC(k) these contributions are contained in the components k = X and 
k = 0. The permutation symmetry ~C(kllk2) = ~C(k21kD has its counterpart 
in the relation 

~x(k) = ~x(X - k) (58) 

and in particular 2x(0) = ~x(X). 
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The Fourier transformation of the inversion equation is 

MxC'(k) = ~xe(k) + ~ (A(k[k') + A(X - k[k') + �89 ') (59) 

where 

1 /. R4(xlY[Z) 
Wx(klk') = ~ J (exp ik.x)(exp -iX-y)(exp - i k ' . z )  dx dy dz 

R~(z) (60) 

We have made use of  the gauge freedom to set f XC(x, y )dx  dy = 0 (see 

Appendix A). Our object now is to find a solution in the form 

s = ~ (klK~x]l)gffxC(l) (61) 

and thus to find the solution of the inversion problem as 

Xxc(x) = (K4x(x]y)NxC(y) dx 
d (62) 

K~x(xly ) = ( l /~)  ~ (exp il.y)(exp - ik .x ) ( exp  �89 - y).X)(k[K4xll) 

The complete inversion is then given by (43). 
Let us first isolate the singlet contribution by taking k = 0. We use the 

results 

Then 

Wx(01k' ) = (N - 3)A(X[k'), A(0lk') = (N - 2) 8w,o (63) 

M x e ( O ) / ( N  - 1) = [1 + A(X]0)]~xc(0) + �89 "~_ A(Xlk')~xC(k ') 
k ' ~ 0  
k ' ~ X  

(64) 

Next we write the equation for k # 0 (and k # X). We isolate the terms in- 
volving )Txe(0) and ~xc(X) and eliminate them with the help of  the preceding 
equation. To simplify writing, introduce 

Ex(k) ~- A(X - k[0) + A(k[0) + �89 ) + mx(klX)] (65) 
1 + k[A(x]o) + A(xlx)]  

Hx(k) = A(k[k) + A(X - k] x - k) 

+ %[Wx(klk) + Wx(k] x - k)] (66) 

Px(klk')  = [1 + Hx(k)] -~ [A(klk' ) + A(X - kik') 
+ �89 - �89 (67) 
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Then for k :/: 0 or X, 

XxC(k) + ~ ~(k')Pa(k[k') 
k ' ~ 0  
k ' ~ X  

= MaC(k) - [Ea(k)/(N- 1)])~ac(0) 
1 + Ha(k) (68) 

The Pa(k[k') are of order 1/~, and the sum is over only one index. The 
situation is now the same as for our previous considerations. In the thermo- 
dynamic limit we have for k # 0 

<k[K~alk> = 1/[1 + Ha(k)] (69) 

The off-diagonal matric elements <k[K4a]0> and <k[K4x]l> for 1 # 0 require 
the solution of the nontrivial integral equation (68). This is a nontrivial 
integral equation but it is now in a' form amenable to a variety of iterative 
solutions. However, we will not at this time investigate further the details 
of such solutions. 

When these matrix elements have been obtained we can revert to the 
singlet equation (64) and write 

Xxc(O) = {1 + A(~'IO) + A(XIX)} 

x 1 ,~- -~f  ~ac(0) ~ ~ w ~ , 0 1  , <k'lK'4all'> A(X]k')~caC(l')) (70) 

k ' ~ a  

from which we obtain <OIK~a[k' > directly. 

4. THE D O U B L E T  K I N E T I C  E Q U A T I O N  

We now proceed to use the analysis of the inversion problem together 
with Eq. (4) to derive a self-contained kinetic equation for the time-dependent 
doublet distribution. We begin by defining 

S(12) -- L(12) + L(21) (71) 

M'(1213) - M(1213) - S(12) (72) 

where M'(1213) does not contain free streaming operators. Writing Eq. (4) 
in terms of these new operators and using equations (6) and (7) one obtains 

{(~/0t) + S(12)}57(12) + t~l + t~2 = 0 (73) 

where the medium terms are 

t~ - M'(1213)(~(123)>([X(13)/<N(13)>] + [X(23)/(N(23)>]} (74) 

t~2 - - �89 (75) 
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The double t  kinetic equat ion has the feature that  the two-body  s t reaming 
opera to r  S(12) depends on - 0-  ~ log R2(x) rather  than on the bare two-body  
potent ial  found in the B B G K Y  chain. 

4.1. Spat ia l ly  Homogeneous  Disturbances 

For  the spatially homogeneous  nonequi l ibr ium problem we have 
X(12) = X(p~p21x2- x~) and 37(12)=  37(plP21X2- xl) in addit ion to the 
t ranslat ional  invariance of  the equil ibrium distr ibution functions indicated 
in Eq. (25). 

The  term ~2 has a contr ibut ion only f rom the C sector. Using the 
propert ies  xc( - x) = xC(x) and Xc(fO = 0, we find 

/x2 = -�89162162 - Pz)/m]'DxR4(xIYIgc)Xc(gc)/R2(qr (76) 

On the other hand,/x~ has contr ibut ions f rom the B and C sectors, and we 
write t~ =/x~ B + /~c. We first in t roduce the vector  opera to r  

8 8 log R2(X ) 
D,, - 0x ~x (77) 

1 0 [O,,Ba(xly)+ ~ R ~ I Y ) ]  X(P~Pa[.7) 
u~ = - ~  r ~-~" R ~ ( y )  

1 er X(PzP31Y) + (1 +-+ 2) (78) + (1 +-+ 2) + ~ ~-P-~2" DxR3(xlY) R2(Y) 

A n d  we note that  in the homogeneous  case (13) becomes 

so that  

f X(P~P3IY) dp~ = r + xZ(p~[y) (79) 

/~c = - r 1 6 2  P2 - Pl 0Ra(x[~) XC(~ ') 
m ~w R2(~) 

We now use the inversion for  X c in Eq. (16): 

u2 + t ~  c = [(P~ - P2)/m]'r162 
where 

F ( x l z )  = { & D x R 4 ( x l Y l ~ )  § [~R3(xl~)/~w]}g~o(~tz)/R2(~;) 
To find tzl B we use the inversion with (78) and (79) 

tzl z = - (1/0)r a(xl~)?7~Z(p~ I~,) + (1 ~ 2) 

+ (1/O)(~r + (1 r 2) 

(80) 

( s u  

(82) 

(83) 
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where 

a(xlz) = Dx{8(x - z) - Ka(x[z)} = Dx{[R3(xIY)/R~(y)IK3(YIz)) (84) 

by Eq. (27), and 

G(xlz) = n(xlz) + [OR3(xlY)/~yl[K3(y[z)/R=(y)] (85) 

To isolate the singlet terms, we express the pair distribution in terms of its 
cumulant and singlet parts 

~TRB(P~[Y) = P'(P~IY) + Pof(P0 (86) 

There is no singlet from the C sector in the homogeneous case. We then 
define 

Hs(x) = H(x[~) = [ - 8  log R2(x)/Sx] - D,,Aa(x), G~(x) = G(x[Z) (87) 

to obtain the final form of the doublet equation for a homogeneous system" 

[~t + S(12)]~7(12) + (-~ ~-~p~.H~(x)f(p~) - ~ r 

1 er 1 ~PRB(p~ [~) + ~ ~p~ H(xl~)P~'(p~]~) - ~ r ~pl j 

+ {1 ~ 2} + p~ - P-------~ r162 = 0 (88) 
m 

The terms indicated by {1r are obtained by exchanging x~ -~ -x ,  
P~ ~ P2 in the entire preceding bracketed expression. 

The momentum structure of this equation is quite simple. It is the non- 
local spatial structure of the medium terms which complicates the equation. 
Note that the kinetic equation requires equilibrium correlation functions 
instead of interparticle potentials as in the usual theories. 

4.2. Spatially Inhomogeneous Doublet Equation 

The term tzl B is very similar to that for the homogeneous case. The 
quantity Xs(pllxl]xl + z) replaces XZ(pllz). Thus 

1 { ~ ~p~O .H(xlz)}~7~'(pllxllxl + r0 + (1 ~ 2) (89) ~ / =  _ r 1 

Using (61), 

= l i~.. x l ) { ~  ~p22. jx(x].~) _ ~b2 ~__p~ 1 c3~z 0  (ex' <90) 
• ~7xc(y) + ( 1 ~ 2 )  
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where 

Ix(x[Y)= fDxRa(x]z) + OR~lz)}(exp-liX'z) K4x(z[Y)R2(~) (91) 

Jx(x]y) = D,,Ra(x]~) K4x(~[y) (exp -�89 (92) 

We also have 

r162 [ ~ o log ;2(xlx~)] R4(,< - x~l~a - x~[~) 

x ~ ~ K4x(~l~) exp - iX .  ~a + ATx(~) + (1 ~ 2) (93) 

Each of these terms has a singlet contribution which can be identified 
by the decomposition 

ATRS(pz ]x~x2) = /~RB(p, I x~x2) + pofB(p, ]x~) (94) 
ATxC(y) = 2pofC(x/2) + PxB(y) 

where 
/ -  

fc(X/2) = J [exp (iX.x/2)]f(p~ Ix) dp~ dx (95) 

Then the analog of (88) for the general inhomogeneous problem can now 
be written explicitly, but we shall not do so. 

We now comment on the singlet equation. From our derivation of the 
two-body additive approximation the first equation of the BBGKY hierarchy 
holds exactly. Thus we have 

0f(1) + p~ O ~ OV(x, - ~=) O pR(pzlx~2 ) (96) 
a----7-- m ~ f(1) - ax~ apl 

This involves the bare potential. On the other hand, integration of (73) over 
x2 and Pz yields 

_ _  _ _ _ _  A z ( x l ~ 2 )  O 0f(1) + pl 0f(1) + _ _  pR(p~jxz~2) = 0 (97) 
~t m 0x 0 ~Pl 

where 

0 log p2(x~ia) K3(~a - xl,  x2 - xl) &(xlx2) = 0xl 

The connection is given by the equilibrium equation 

(98) 

0 V(xlx2) 0 V(xl~a) (99) 1 Opdx~x~) _ pdx~x~) Ox----~-- + m ( x l x ~ )  Ox~ 
8 ~x~ 
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together with the integral equation for K3. One easily finds 

A l ( x ~ x ~ )  = - 0 a V(xlx2)/~xl 

an exact property of the inversion kernel/s 

(100) 

5. CONVENTIONAL T R U N C A T I O N  THEORIES 

We will now compare our equations with those of other theories which 
aim to deal with the Coulomb force problem and with particles interacting 
via strong short-range forces. The theories in question are at the level of the 
two-particle distribution function. For the general nonlinear case the second 
equation of the time-dependent hierarchy is 

{0  } f~V(13) 0 ~ V(23);s  
+ So(12) N(12) --- I ~ c5pl + ~xz 

(101) 
So(12) = p~---~-0 + 0V(xlx2____ ) c~ + (1 +-* 2) 

m ~xl ~xl ~Pl 

This equation is converted into a self-determined equation when a functional 
form (holding at all times) for the dependence of N(123) on the lower-order 
distributions is assumed. 

It is useful to introduce cumulant distributions at this point. The standard 
definitions in the N -+ oo limit are 

N(1) = f(1), U(12) = P(12) + f(1)f(2) (102) 

N(123) = T(123) + P(12)/(3) + P(23)U(1) + P(31)/(2) + f(1)f(Z)f(3) 

The simplest example of a useful truncation is the one on which much of 
plasma physics is based. That is, T(123)= 0. This implies a nonlinear 
truncation, 

N(123) = N(12)f(3) + N(Z3)f(1) + N(31)f(2) - 2f(1)f(Z)f(3) 

This is clearly a normalization-preserving truncation. We will refer to this 
as the time-dependent cumulant approximation. The equation for the 
development of N(12) is, with this approximation, nonlinear but closed. To 
make comparison with our equations more direct, we can write the distri- 
butions as a sum of an equilibrium part and a deviation from equilibrium, 
e.g., 

N(12) = dp(pl)~(p2)p2(12) + ~7(12); .~(12) = BT(x, pl, P2) (103) 

The equilibrium pair distribution is determined by the equation 

802(x) OV 0 
f V(Ix - Yl)p2(Y) dy (104) 0-1 

~x ~x p2(x) = - po Fxx J 
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To first order in the deviations from equilibrium we have 

8x~ P(x~) 

- r af(1) ~ v ( f  + x ,  - xl)  P2(Y) + po ~(p~lx2~3) 
8p~ 8y 8pi 8xl 

8 V(x~i3) 8 
+ por ax, 8p, ~R(p, lx,~3) + (1 +--, 2) (105) 

Where we have defined #(xa)= f~7(3)dpa, and #R(pl[xixa) is defined by 

(13). One of the most obvious differences between this equation and (72) 
is that the streaming term So(12) in (105) involves the bare interparticle 
potential V(12), whereas the theory of this paper involves a two-body en- 
counter with an effective potential - 0- * log p2(x), where p2(x) is the exact 
pair correlation function. We find the equation for the doublet cumulant 

[8 ] 8~  8 V(xl~,a) 
+ So(J2) P(12) = b--~Tp .r + poq 8x---7- ;(x3) 

8 V(x~x~) + #o - / x 2  f(P~IX~) - r 8f(P~lX~) 
8p~ 

s v ( y  - x~ - xO aV(xlx~)] 
• ay P~(Y)- Po ~ j 

8 r  8 V(XI :KS)  - - 
+ Po 8pz ~ P(23) + (1 +-~2) (106) 

Equation (106) cannot be solved for arbitrary initial conditions. For 
this one would at least need a detailed knowledge of the Green's function 
for the operator {(a/at) + S0(12)}; that is, for the interacting two-particle 
system. For this reason additional approximations are made in the standard 
theories. In the case of long-range Coulomb forces the term [8V(12)/axz] x 
(8/Spl)P(12) + (1 +-+ 2) is generally neglected since it is assumed to be of 
higher order in the expansion parameter e20 than the other terms. This is 
true except at small interparticle distances. Then one only needs the non- 
interacting two-particle Green's function. The solution of the resulting 
equation for a system at equilibrium is the Debye-Htickel pair distribution. 
For the time-dependent case a Fourier-Laplace transform yields a singular 
integral equation in the momentum variables which is solvable by Hilbert 
transform techniques/s) 
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The crucial point is that the right-hand side of Eq. (106) takes on a 
convolution form in the spatial variables when one makes the cumulant 
approximation. Thus after a spatial Fourier transform the distinct wave 
vectors are uncoupled. Additional assumptions for the time scales for the 
relaxation of P(12) and f(1) (adiabatic switching assumptions) yield a closed 
singlet equation known as the Lenard-Balescu equation. This is a step that 
does not concern us directly in this paper. We are interested in the structure 
of the doublet equation. The neglect of the direct two-body force in the 
streaming term leads to divergences at small distances of the order of e20. 
The Debye-Htickel distribution is also negative in this region. 

For the case of the low-density gas of particles interacting via short-range 
forces one asserts that the right-hand side of (106) is of higher order in density 
than the rest of the equation, and can be neglected in the first approximation. 
Then one does not need the full interacting two-particle Green's function, 
but only its asymptotic behavior, which can be expressed in terms of the 
scattering cross section. For a system in equilibrium we obtain the static 
pair distribution: 

c2(r) = - p02(1 - e-~ (107) 

The nonequilibrium case is treated by neglecting all integral (medium) 
terms in the integral equation obeyed by the time-dependent cumulant. The 
The singlet terms in this equation are treated as inhomogeneous terms. When 
the solution of the cumulant equation is inserted in the singlet equation, one 
obtains a non-Markovian singlet kinetic equation. Under suitable circum- 
stances this is equivalent to the Boltzmann-Enskog equation. ~6~ However, 
it would be a mistake to try to improve the theory by solving the equation 
for the doublet including the integral terms. The cumulant approximation is 
deficient and does not treat properly the strong short-range forces between 
a member of a given pair and a particle from the medium. Thus we would 
expect divergences to appear in higher orders in the density. 

We have shown that both these kinetic equations can be said to arise 
from further approximations which result from the same cumulant truncation 
of the hierarchy. We now consider another method of truncation of the non- 
equilibrium hierarchy. 

In the study of the equilibrium properties of dense gases and liquids 
use has often been made of the Kirkwood superposition approximation 
(KSA) ~9~ 

(N(123)) ~ (~-(12))(~(23))(2V(31))/(/V(1))(iV(2))(_N(3)) (108) 

This is motivated by the fact that for strong short-range forces the triplet 
distribution must vanish when any two particles are close to each other. 
The KSA is a minimal means of taking this into account. It is clear, for 
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example, that the equilibrium cumulant ca(123) cannot vanish, and it is 
only in a low-density treatment that the error of neglecting it causes no 
trouble. Since the KSA has correct asymptotic behavior at both large and 
small distances and agrees with the time-dependent cumulant approximation 
to lowest meaningful order, it is a good candidate for a unified theory of 
fluids. We now sketch such a theory based on the time-dependent KSA not 
so much because we are interested in it per se, but rather to demonstrate 
that the structure and degree of complexity of the resulting doublet kinetic 
equation show marked similarities to those of the doublet equation derived 
in Section 4. Approximations similar a to the KSA presented here have been 
considered by other authors. (13,14) In particular, Stillinger and Suplinskas 
use a Kirkwood truncation as part of a program for practical calculations 
of the self-diffusion coefficient. 

We assume the truncation 

N(123) =~ N(12)N(23)N(31)/N(1)N(2)N(3) (109) 

and again put N(12) = p2(xlx2)r162 + A7(12), and develop to the first 
power of time-dependent quantities. For the time-independent part we obtain 
the Kirkwood integral equation 

0_ 1 R~(x) + R2(x) av(x) R2(x) av(~) 
~ ~ + -po 3 Oy R2(Y - x)R2(Y) = 0 (1 I0) 

which relates R2(x) to the interparticle potential. This equation has sensible 
solutions both for systems with Coulomb forces and for systems with strong 
short-range forces at low and moderate densities. For the time-dependent 
part the truncation is 

A7(123) = {~(12)p2(xlx2)p2(x2x3)r 3 

--  JV(1)(~2~3PO 4D2(XlX2)p2(X2Xs)p2(X1X3)} 

+ {cyclic permutations} (111) 

We now insert this into the second equation of the hierarchy and for the 
purpose of comparison with the results of Section 4 we consider the homo- 
geneous problem. (Generalization to the inhomogeneous case is also possible 
but it does not yield much additional insight.) To facilitate this comparison, 

3 The only difference between our KSA and that of Stillinger and Suplinskas<~a) and of 
Mortimer (14) is that in the latter one ostensibly has the freedom to use the exact, or 
at least more exact, values of the equilibrium correlation functions, rather than the 
ones predicted by the KSA on the equilibrium BBGKY hierarchy. However, we 
strongly suspect this freedom is illusory, because the KSA is not consistently applied 
to the "steady-state" (i.e., equilibrium) solution as well as to that equation for the 
deviations from equilibrium, so that secular divergences may appear. 
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we cast the resulting equation in the form of (88): 

N + m 8x L ~-~ poJ(x) �9 Op2 8 

8/(pl) 
+ Hs~(x)/(rl) - ~ ~Gs~(x) 

0 8p2 8pl 

1 8q~z 1 8/3~'(PllZ)\ + {1 <-+ 2} 

+ P l  - P~ ~ v " ( x l ~ ) ~ 7 ~ ( ~ )  = 0 0 1 2 )  
m 

where we have introduced 

J(x) = - [8 V ( y ) / S y ] R 2 ( y  - x ) R 2 ( y ) p g "  (113) 

HZ(xlz) = -OR2(x)R2(x + z)[aV(x + z)/OZ]po 4 (1.14) 

G ~ ( x l z )  = - 0 R ~ ( x ) R ~ ( x  - z)[aV(z)/~Z]po' (115) 

V'(xlz) = G"(xlz) + n"(xlz) (116) 

H~r(x) = Gs~:(x) = (O/po)R2(x)c2([r - x)8V(y)/Sy (117) 

We first note that since we assume the superposition approximation on 
the equilibrium functions, (110) implies 

[8 V (x ) /Sx ]  - p0J(x) = - (1/0) e log R 2 ( x ) / S x  (118) 

Thus, in contrast to the time-dependent cumulant approximation, there is 
an effective two-body collision term, distinct from the bare potential, and 
in fact it is the same effective potential as that which appears in the theory 
of this paper. However, the R2(x) that appears in the KSA theory is presumed 
to satisfy (110), whereas the two-body additive approximation imposes no 
such restriction. 

The time-dependent cumulant approximation is obtained from the KSA 
by substituting c2(y) - pS-2R2(y) - 1 = 0 in Eqs. (113)-(117). The fact that 
the resulting HC(xlz) is the function only of (x + z) and that GC(x[z) is a 
function only of z is the property which gives the spatial convolution character 
to the RHS of (106). This property is lost in both the KSA and the two-body 
additive approximation. Hence, even if we assumed knowledge of the two- 
body interacting Green's function, we would still have a nontrivial integral 
equation in the spatial variables. 

The similarity between the KSA and the two-body additive approxima- 
tion is more than structural. It is shown in Appendix B that, at least for 
weakly interacting systems, part of the two-body additive truncation (i.e., 
those terms that do not involve K~) agrees approximately with the KSA 
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result. That  is to say we can expect the quantities G(xlz ) and H(xlz) to be 
well approximated by the Kirkwood expressions (114) and (I 14) under these 
circumstances. However, it is one of the characteristic differences of the two- 
body additive approximation from conventional theories that the C momen- 
tum sector is treated distinctly from the B sector. The consequence is that an 
equation like (116) does not hold for our theory even for weakly interacting 
systems. 

Another clear difference of the two-body additive theory from other 
truncation schemes is that it implies a nonlocal truncation. One of the ways 
that this nonlocality is important  is that it makes the truncation exact at 
t = 0 for an important  class of  initial value problems. The main emphasis 
of treatments of  the time-dependent hierarchy has been the derivation of 
singlet kinetic equations. However, they can be used to calculate time-depen- 
dent correlation functions such as the density autocorrelation function, 
which is closely related to the inelastic scattering function S(k, ~o). In that 
case the microscopic initial condition is 

FN(t = 0) = ~ exp - i k . q ~  (1 19) 

The initial conditions for the reduced distribution functions are then 

?7(plxlIt = 0) = {po + /72(k)}(exp - i k ' x l ) r  (120a) 

AT(p~p2x~x2]t = 0) = 

AT(plp2paxlx2x31t = 0) = 

r162 - ik. xa) 

+ p2(xlx2)[exp - i k . x i )  + exp - ik .x2]}  (120b) 

r162162 - ik.:~4) 

+ m(x~x2x3) 

• [(exp - ik .x i )  + (exp - ik.x2) + exp - ik.x3]} 

(120c) 

I f  one wishes to calculate the density autocorrelation function, one 
must solve the doublet kinetic equation with the initial condition (120b), 
incorporating the exact values of p2 and p3. However, both the time-dependent 
cumulant approximation and the KSA violate the initial condition for FN. 
The connection assumed between the triplet and doublet distributions is not 
the same as that between (120c) and (120b). This failure at t = 0 is an 
unavoidable property of  any spatially local truncation, including those of 
Stillinger and Suplinskas and of Mortimer. How serious this violation is 
depends on the particular situation, i.e., on whether further approximations 
to the equilibrium correlation functions are adequate. On the contrary, in 
the type of theory that we have presented, the initial condition on FN is 
exactly satisfied. Hence the relation between all reduced distribution functions 
is exact at t = 0. One consequence of this is that the fourth frequency moment  
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of S(k, co) predicted by the two-body additive theory is exact, as shown in I. 
The same analysis applied to cumulant and superposition approximations 
shows that they give an incorrect fourth moment. 

A P P E N D I X  A: G A U G E  T R A N S F O R M A T I O N S  

In this appendix we discuss the manner in which an explicit one-body 
function tF(1) can be isolated. In I, the two-body additive approximation was 
defined by 

FN = {~(i) -- (N(i))}~b(i) + �89 - (N(12))}W(i2) 

which should be compared with (2). From this we obtain 

f(1) = M~z(12)~b(P_) + M~=(123)q~(2.~) 
~7(12) = M2ff123)~b(3) + M22(12374)~F(374) (A.1) 

where 
M22(1234) = �89 - (N(12))(N(34))} 

M2~(123) = (N(12)N(3)) - (N(1))(N(23)) 
(A.2) 

M~2(123) = �89 - (N(1))(N(23)),  

Ml1(12) = (N(1)N(2)) - (N(1))(N(2))  

It is clear that there is some redundancy in the description of Fu by 
~b(1) and ~F(I 2). Indeed, we can make a "  gauge transformation" to a different 
~b'(1) and W(12) without affecting the value of Fu. The most general such 
transformation is 

�9 (12) --- ~F'(12) + A(1) + A(2) + C 
(A.3) 

~b(1) = ~'(1) - [A(1)/(N- 1)1 + D 

where A(1) = A(xl, pl) is any one-body function, and C and D are constants. 
It is not possible to invert Eq. (A.1) uniquely without specifying a gauge--  
that is, a relation between ~b(1) and ud(12). The gauge chosen for the bulk of 
this paper is ~(1) = 0. Since there are two constants in (A.3), we can, in 
addition, use one of them to impose the condition X(i~) = 0. In the notation 
of Section 3 this is 

f XC(x~x2) dxl dx2 0 (A.4) 

However, another gauge is more suitable for explicit comparison to the 
one-body theory. This gauge is specified by the property 

M12(123)W'(2-3) = 0 (A.5) 

That an A(1) can be found ensuring this property is easily shown. We 
define 

J(1) -= M~2(123)W(23) 



Approximate Solutions of the Liouville Equation 135 

Then the requirement is simply 

J(1)/(N- 1) = M~l(13)A(3) (A.6) 

This equation is structurally identical to (31) and the solution, again, is 
given by the one-body inversion exhibited in paper I. A solution always 
exists, so we can always find a (~F', ~b') satisfying property (A.5). 

A P P E N D I X  B: THE S T R U C T U R E  OF THE TRIPLET 

In this appendix we exhibit the truncation for 57(123) implicit in the 
two-body approximation by means of the solving kernels K3 and/(4 ,  and we 
compare the KSA truncation. 

The definition (1) gives for the triplet 

37(123) = �89 - (N(123))(N(7~3))}qe(a,3) (B.1) 

which can be written in terms of reduced equilibrium distribution functions 
in the form 

X(12) X(13) + X(23) "~ 
57(123) = (N(123)) (N--0-2-)) + (N(13)-------~ (N(23))J  

+ (N(1237r x(l~) + X(2a,) + X ( 3 ~ ) ;  
/,(N(14)) <N(22D) (N(34)))  

+ 1-"f<N(1237~3))2/~ <N(123)>} X(a3) (B.2) 

We now divide N(123) into its projections onto different momentum sectors 
in the manner of Section 2. We define 

AT~176176 = 

57~~176  = 

3 7 ~ 1 7 6  = 

3711~ = 

57111(plpzpa [xlx2xa) = 

; d p ~  dp~ dp~ 37(123) 

f dp2 dpa - 37(123) ~137~176176 

f dpl dp~ - 37(123) r 

f dp, 23) -- 00(01 [xlx2x3) 4257 1 

-- 613701~ + 61q~237~176176 
57(123) -- $3371~~ 
-- r176 -- r176 
+ ~blfa37~176 + 62~bx57~176 
- ,kl,k~6~oOO(xlx~x~) + ,~ ,~#>~176  

(B.3) 
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We use the formal solution of the inversion problem introduced in (16), 

XA(12) = bTA(12), XRB(pXlxlx2) = K3(xlx2~,a)bTnB~llxlRa) (B.4) 
xO(xlx~) = K~(x~x2~,)~7~'(~) 

to obtain the explicit form of the triplet: 

~7~(p~p~p.lx~x~xo) = o (B.Sa) 

~7~~ --  pa(XlX2Xa)~TA(plp21xlx2)  (B.Sb) 

= (m(xlx~x~)  - - B - ~7~~176 ~ ~  K3(x~x~x0V~ (pdx~x4) 
(P3~. 1 2) 

+ [c.p.(123)]} 

+ t,~(xlx~x~)K~(x~,~) ~P(p~lxl~) (B.Sc) 
p2(x~5) 

~ooo(x~x~x~) ~p~(x~x~x3) = ~ p~(x~x~) K't(x~x~iai~)370(i~i~) 

+ [c.p.(123)]} 

+ [c.p.(123)]} 

[p~(x~x2x~&) p~(x~x~x~)]K~(~o~o~0 
+ 2 L ~  - 
x ~Te(~a~v) (B.5d) 

Here, the notation [c.p.(123)] indicates the sum over cyclic permutations of 
the indices 1, 2, and 3. 

On the other hand, the linearized KSA (on both time-dependent and 
equilibrium triplet) gives the following structure: 

37m(plp2p31x~x~x3) = 0 

~11O(plp2[xlx2x3 ) = pa(xlx2xa) ATA(plp21xlx2) 
t,2(xlx2) 

~71~176 = p3(xlx2x~) ~Tp(p~Lxlx2) 
m(xlx2) 

+ p3(xlx~x~) ~TP~IxIx~)  
p2(xzx2) 

(B.6a) 

(B.6b) 

(B.6c) 



Approximate Solutions of the Liouville Equation 137 

A7OOO(xlx2x3) fp3(xlx2x3) 37C(xlxz ) + [c.p.(123)1} 

fp3(xzx2x3) )qC(xl~4 ) + [c.p.(123)]} (B.6d) - ? )  

The two truncations agree in the first (111) sector by virtue of their both 
being linear truncations. The agreement in the (110) sector is, however, 
nontrivial. The only difference between the truncations in this sector is that 
in (B.6b) we must take the KSA form for p3(xlx2x3), whereas in (B.5b) we 
use the exact p3(xlx~x3). 

There is in addition an interesting similarity between the two truncations 
in the (100) sector, though it is not as immediately apparent as in the previous 
two cases. To make the comparison, we need to approximate the p3 and p4 
appearing in the (B.5c). Choosing the KSA for p3 and the generalized KSA 
of (51) for p4, and making use of the integral equation (27) for/<3, as well 
as property (30), we find that most of the terms involving/(3 explicitly can 
be eliminated. In particular, (B.5c) becomes 

~71~176 I xlx2x3) = p3(x~x~x~) ~7~"(pl[x~x~) 
p~(x~x2) 

+ m(x~x2x~) ~R"(p~lx~x~) m(x~x~x3) ~TRB(x~:L) 
p2(xlx3) po N -  l 

+ m(xlx~x~)c~(x~ - ~)c~(x~ - ~ )  
Po 

• K~(x~5)~7~"(p~ I x l ~ )  (B.7) 

where c2(xl - x2) -- [p~2p2(x~x2) - 1] is the pair correlation function. The 
first three terms on the right of (B.7) are the KSA result. The last term can 
be expected to be small for most systems. 

We can investigate more precisely how small this term is by assigning 
an order of magnitude A to c2(r) for all r outside a small volume v. In addition, 
we decompose 

37RB(pltxlxs) = p0fB(pl[xl) +/~2~B(pllxlxs) (B.8) 

and we suppose that/~B has the same order of magnitude A for all [x~ - xsI 
outside the volume v. The last term of (B.7) then has two parts: a singlet 
part and a doublet part. The pair part can clearly be expected to be of order v 
plus order A 3. The singlet part is 

This involves only the part of the inversion specified by {klK310). We refer, 
then, to (35) and (42) and observe that K3(xlx4:~) should have the same 
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general  spat ia l  s t ructure as cz(x4 - xl) .  Hence the singlet con t r ibu t ion  can 
also be expected to be of  order  v plus order  ),3. To summarize ,  in the context  
of  the general ized superpos i t ion  app rox ima t ion  on the equi l ibr ium dis t r ibu-  
t ion the expressions (B.5c) and  (B.6c) agree to th i rd  order  in the pa i r  corre la-  
t ion function.  

Final ly ,  when we turn  to the lowest  sector  (000), we are unable  to 
demons t r a t e  such a clear re la t ionship  between the two t runcat ions .  I t  should  
be noted  tha t - the  failure of  the K S A  to ma tch  the correct  init ial  condi t ions  
for  the densi ty  au tocor re la t ion  funct ion p rob lem also occurs in this sector. 
I t  is the nonloca l  charac te r  of  the two-body  addi t ive  t runca t ion  which gives 
the correct  init ial  condi t ions ,  and  the K S A  canno t  r eproduce  this non loca l  
behavior .  
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